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ABSTRACT

Large volume asymmetries of the quadratus lumborum (QL) 
muscle, determined from time- and expertise-intensive manual
segmentation of axial magnetic resonance (MR) images, have been 
associated with an increased risk of developing pars interarticularis 
stress lesions in the lumbar spine of cricket fast bowlers.  The 
purpose of the present study was to develop an atlas-based 
automated segmentation procedure to determine QL volume from 
MR images.  An MR database of axial lumbar spine images from 
15 fast bowlers and 6 athletic control subjects was used to generate 
the atlas-based segmentation procedures.  Initially, all images were 
preprocessed with a bias field correction algorithm and reverse 
diffusion interpolation algorithm followed by affine and non-rigid 
registration methods to generate firstly an average shape atlas 
(AVG), then based on propagation of manually segmented QL 
data, develop a probability atlas for automated QL segmentation to 
calculate muscle volume. The Dice similarity metric (DSC) was 
used to compare between the QL volume data from the manual and 
automated segmentation procedures. The mean DICE similarity 
coefficients between the manual and atlas-based automated 
segmentation values for the right and left QL muscle volumes were 
0.75 (sd=0.1) and 0.76 (sd=0.09), respectively.  These preliminary 
results for the automated segmentation of the QL are encouraging. 
Further development of the atlas-based segmentation procedures 
will involve incorporating hierarchical probability atlases for 
adjacent thoracolumbar muscles to improve the robustness and 
accuracy of the morphometric analyses obtained by this statistical 
shape modeling approach. 

Index Terms - quadratus lumborum, thoracolumbar musculature, 
automatic segmentation, atlas creation, MRI

1. INTRODUCTION 

Morphometric analyses of the human thoracolumbar musculature 
derived from MR images to obtain measures of muscle cross-
sectional areas or volumes have been used for examining muscle 
hypertrophy or atrophy in relation to changing loading milieu [1] 
and investigating the association between the relative in vivo mass 
of selected paraspinal muscles and lower back pain or injury [2].  
In studies published to date, time- and expertise-intensive manual 
segmentation of the MR images has been used for the 
morphometric analyses of the thoracolumbar muscles. 

The overarching aim of the present research is to develop 
automated segmentation procedures for fast and robust extraction 
of accurate and objective morphometric data (e.g., cross-sectional 
areas, volumes) for the numerous, architecturally complex 
thoracolumbar muscles. In this paper, we present the procedures 
for an atlas-based automated segmentation of the quadratus 
lumborum (QL) volume. Our method  involved the generation of 
an average population atlas from axial MR images of the lumbar 
region involving affine [3] and non-rigid [4] registration of each 
case to allow segmentation of the QL using propagation of a 
probabilistic atlas derived from our existing MR dataset. 
These segmentations were performed in a leave one out 
experiment (in terms of atlas creation) and validated against expert 
manual segmentations using the Dice similarity metric [5].

2. MATERIALS AND METHODS 

Two MR databases were used in this study. Database A consisted 
of 21 subjects, including 15 male cricket fast bowlers and 6 
athletic control subjects, all aged between 18 and 35 years old. 
This MR dataset consisted of contiguous 7mm axial images (SE, 
TR=650ms, TE=15ms, FOV=250mm, 256x256 matrix, in plane 
resolution 0.98x0.98mm, 2 NEX, Siemens 1.5T Magnetom 
Vision). 
Database B consisted of 3 subjects (contiguous 3mm axial images, 
SE, TR=590ms, TE=11ms, FOV=400mm, 512x512 matrix, in 
plane resolution 0.78x0.78mm, 2 NEX, Siemens 1.5T Sonata 
system). For preliminary analysis of the reproducibility of the 
atlas-based automated segmentation procedures one subject was 
examined twice on two different occasions.   
Axial images from the entire lumbar region were acquired with a 
phased-array spinal coil as participants lay supine in the magnet 
bore with their lower limbs relaxed in extension against the patient 
table. The medical research ethics committee of the University of 
Queensland approved all aspects of this research.   

2.1 Image Processing 

All scans were preprocessed with a bias field correction algorithm 
[6]. Database A was also preprocessed with an interpolation 
algorithm [6]. Figures 1, 2 and 3 illustrate the iterative steps 
involved in constructing the average shape atlas, generation of the 
probability atlas for the QL and subsequent validation of the atlas 
with a leave-one-out method. 
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2.1.1. Inhomogeneity Correction
As a first step for the automated atlas-based segmentation of the 
QL, a bias-field correction algorithm based on local entropy 
minimization with a bicubic spline model (LEMS) [6] was used to 
correct strong intensity inhomogeneities in the MR images. 
Specifically, it was used for the very steep signal drop-off in the 
images in dataset A as illustrated in Figure 4. 

Figure 1. Flow diagram illustrating the process of the Average Shape Atlas 
creation. The multiple slices represent volume of dataset. 

Figure 2. Flow diagram illustrating propagation of manually segmented QL 
to the atlas space. 

Figure 3. Flow diagram illustrating automatic propagation of QL 
probabilistic map to segmentation process. 

Figure. 4. Original image on the left and image corrected with LEMS 
inhomogeneity correction algorithm on the right. 

2.1.2. Interpolation of Axial Images 
To approximate the between-plane resolution of dataset A with 
dataset B a reverse diffusion interpolation (RDI) algorithm [7] was 
applied to the original 7mm cross-sectional images of dataset A  
resulting in an adjusted 0.98x0.98x3.5mm resolution. 
Reduction of the section dimensions helps in segmenting elongated 
anatomical structures like the QL by reducing the anisotropy of the 
data. This allowed a better match between the atlas and each case 
as well as improving the visualization of muscle volume and 
multiplanar reformatted views. 

2.1.3. Affine Registration 
The global transformation between each case and the atlas was 
estimated by an affine transformation determined from 
correspondences between very similar areas in both images using a 
block matching strategy. This procedure has been extensively 
described in [3] for rigid registration of anatomical sections. 

2.1.4. Non-Rigid Registration 
After affine registration of each case to the average shape atlas 
(AVG), non-rigid deformation, modeled by a Free Form 
Deformation (FFD) based on B-splines [4], was used to account 
for local differences between the case and the average atlas. We 
used a grid of control points defining a B-splines to determine the 
deformation. Each grid point was optimized individually to define 
local deformations. The B-splines were locally controlled, which 
makes them computationally efficient even for a large number of 
control points. In this work, a multi-resolution approach of 2 
hierarchical levels was used and within each level the spacing 
between control points was decreased (from 20 to 10 mm). 

2.1.5. Tissue Classification
Following propagation of the probability atlas for segmentation of 
the QL, a kmeans tissue classifier was used to exclude any falsely 
included abdominal fat from the segmented muscle profile. The 
MR images were assumed to contain four “tissue” classes 
(background, abdominal fat, muscles, and abdominal viscera) and 
the intensity was classified using a standard kmeans tissue 
classification algorithm [ITK]. 

2.2 Atlas Creation and Propagation 

In our study we generated an AVG described by Rohlfing [8] 
(Figure 1). An arbitrary but “representative” case in our database 
was selected as the initial reference case. In the first iteration we 
registered each of the remaining images to the selected reference
case using an a ne transformation. All the affinely registered 
cases and the reference case were then combined into an average 
(mean) atlas. Subsequent iterations involved all subjects including 
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the reference case being registered to the average image by non-
rigid transformation. After each iteration a new average image was 
generated and used as the input atlas for the subsequent iteration. 
A total of 3 iterations were used in this study. 
The probabilistic atlas (PA) for the QL was generated (Figure 2) 
by propagating the manual segmentations of this muscle for each 
case using the obtained affine and deformation field computed 
from the MR into the atlas space. The resulting sets of 
segmentations were then combined into a probabilistic atlas. 

2.3 Segmentation Process 

The bias field corrected and interpolated MR images (LEMS, RDI) 
were intensity normalized (zero mean and unit variance). These 
images were then classified using a kmeans algorithm [ITK]. 
Using a leave one out technique, AVG and probabilistic QL atlases 
were generated. AVG atlases were registered to the leave out cases 
and the resulting registrations used to propagate probabilistic QL 
to the subject MR spaces. Propagated QL atlases were thresholded 
to 50% and regions classified by k-means as fat were removed 
(Figure 3). 

2.4 Validation 

The segmentations were performed in a leave one out experiment 
(in terms of atlas creation) and validated against manual 
segmentations using the Dice similarity metric (DSC = 2 (A  B / 
(A + B) ) [5].  

3.0 RESULTS AND DISCUSSION 

3.1 Validation of Automatic Segmentation 

The complex shape variation seen in the QL is shown in Figure 5. 
Figure 6 shows average PA and PA overlaid with a probabilistic 
map of segmented QL. The graph in Figure 7 shows the results of 
segmentation accuracy - PA with threshold set to 50% improved 
by tissue classification. The mean DSC coefficient for right and 
left QL was 0.75 (median = 0.79, std. = 0.1) and 0.76 (median = 
0.78, std. = 0.09), respectively. 
To illustrate the difference in quality between the automatic and 
the manual segmentation of the QL volume one case with a high 
DSC value is compared with two cases with lower DSC values 
(see Figure 8). The upper pair of images shows the subject with the 
high DSC value (0.84 for right and 0.86 for left QL). The middle 
pair of images shows the results for a subject with left-right QL 
asymmetry of 20% and the lower image displays a subject with 
distinct bulging of the left QL.  
The main causes of segmentation errors are the QL shape 
variation, the difficulties in detection of muscle contours between 
QL and surrounding musculature (erector spinae, psoas major and 
internal abdominal obliques) as well segmentation difficulties in 
the region where QL is attached to the iliac crest (pelvic bone). 

Figure. 5. Manually segmented quadratus lumborum (red contour) at same 
axial level in 6 representative cases show muscle shape variation, 
asymmetry and surrounding musculature. 

Figure. 6. Axial view of the Average Shape Atlas (left) and same Atlas 
overlaid with probabilistic map of segmented quadratus lumborum (right). 

Figure.7. Dice Similarity Coefficients (DSC) of the automatic to manual 
segmentation for right and left QL.  

Furthermore, automated segmentation of the QL was hampered by 
the proximity of other structures (e.g., kidneys) with similar signal 
intensity to the muscle which provided minimal contrast between 
the tissues.  
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Figure. 8. Upper pair of axial slices – subject with high DSC values (DSC: 
right QL 0.84, left QL 0.86). Middle pair - subject with left-right QL 
asymmetry 20% (DSC: right QL 0.56, left QL 0.61). Lower pair show 
subject with bulge on the left QL (DSC: right QL 0.8, left QL 0.62). Left 
images displays overlaid probabilistic map. Right images show differences 
between manual (red contour) and automatic (blue contour) segmentation. 

Figure. 9. The QL volumes obtained from automatic and manual 
segmentation.  

3.2 Quantitative Analysis 

We performed the volumetric quantitative analysis of manually 
and automatically generated segmentations. Figure 9 illustrates 
how the volumetric results are particularly sensitive to the quality 
of automatic segmentation. With further optimization of the 
algorithm
and generation of atlas from wider population the further 
improvement is expected. 

3.3 Reproducibility of Quantitative Analysis 

In terms of preliminary validation of the reproducibility of the 
automatic segmentation of the QL we calculated the (DSC 
coefficient) measures of left-right asymmetry on one subject (case 
23 and 24). As can be seen in Figure 7 there is less than 3% 
difference in DCS score which is encouraging. 

4. CONCLUSIONS AND FUTURE WORK 

We have developed a promising automated segmentation 
procedure for determining bilateral QL muscle volumes based 
around a dedicated probability atlas of this paraspinal muscle.  In 
order to improve the robustness of the automated segmentation of 
the QL and other paraspinal muscles such as the psoas, multifidus 
and erector spinae, further optimization of this approach will likely 
involve the hierarchization and generation of probability atlases 
for all the trunk muscles.  Potentially, the use of multiple 
probability atlases across the thoracolumbar musculature will 
allow better separation along intermuscular septa and provide more 
robust volumetric data for individual muscles.  Similarly, the 
addition of more sophisticated tissue classification methods should 
further enhance the atlas-based segmentation of the anatomically 
complex paraspinal muscles from adjacent abdominal fat and 
viscera.  In future work we will incorporate the above methods on 
a larger MR dataset and examine the performance of the atlas-
based approach for segmenting individual muscles with varying 
topologies (anatomic variations), asymmetries and trophic 
responses.    
The results from the present atlas-based automated segmentation 
of the QL are encouraging and, with further developments, this 
approach could have ready application for morphometric analyses 
in large biomechanical studies and prospective examinations of 
preferential hypertrophy (atrophy) of the thoracolumbar muscles in 
(un)trained and injury states. 
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